Páginas

28 de nov. de 2016

EXERCÍCIOS POLÍGONOS

1)Qual o polígono cuja medida do ângulo interno é igual a 1080°

2) Qual o polígono  cuja medida do ângulo interno é igual a 720°


3) Qual é a soma das medidas dos ângulos internos de um polígono de 12 lados?

4) Qual a medida do ângulo interno e do ângulo externo de um octágono regular?

5) Em um triângulo, as medidas dos ângulos internos são expressas, em graus, por 3x, x e 6x. Quanto mede cada ângulo?





RESPOSTAS:

1)Qual o polígono cuja medida do ângulo interno é igual a 1080°

Como o problema não diz se é um regular. Usaremos a formula: Si=(n-2).180°

2) Qual o polígono cuja medida do ângulo interno é igual a 720°


3) Qual é a soma das medidas dos ângulos internos de um polígono de 12 lados?

n=12 lados

Si=(n-2).180°
Si=(12-2).180°
Si=(10).180°
Si=1800°
A soma de um polígono de 12 lados é 1800°


4) Qual a medida do ângulo interno e do ângulo externo de um octágono se for regular?





















5) Em um triângulo, as medidas dos ângulos internos são expressas, em graus, por 3x, x e 6x. Quanto mede cada ângulo?

Lembrando que a soma interna de qualquer triângulo é igual a 180°










x= 18° 

3x → 3 . 18° = 54°

6x → 6.18° = 108°


Os ângulos medem: 18° , 54° e 108°

27 de nov. de 2016

PROBLEMAS ENVOLVENDO ADIÇÃO E SUBTRAÇÃO

1) Calcular o números de algarismos necessários para escrever todos os números de 2 algarismos:

2) Calcular o números de algarismos necessários para escrever todos os números de 3 algarismos:

3) Calcular o números de algarismos necessários para escrever todos os números naturais  de 1 a 88:

4) Calcular o números de algarismos necessários para escrever todos os números naturais  de 20 a 92:

5) Calcular o números de algarismos necessários para escrever todos os números naturais  de 47 até 249:



RESPOSTAS:


1) Calcular o números de algarismos necessários para escrever todos os números de 2 algarismos:

Os números de dois algarismos começam no 10 e vão até 99

Subtraindo o maior do menor e incluindo uma unidade a esse resultado: 99 - 10= 89 + 1 = 90

Agora multiplicamos esse resultado por 2.

90 x 2 = 180  algarismos para escrevê-los 



2) Calcular o números de algarismos necessários para escrever todos os números de 3 algarismos:

Os números de três algarismos começam no 100 e vão até 999

999 -100 = 899 + 1 = 900

Agora multiplicamos esse resultado por 3.

900 x 3 = 2700 algarismos para escrevê-los



3) Calcular o números de algarismos necessários para escrever todos os números naturais  de 1 a 88:

De 1 a 9

9 - 1 = 8 → 8 + 1 = 9 

9 x 1 = 9 algarismos

De 10 a 88

88 - 10 = 78 → 78 + 1 = 79

79 x 2 = 158 algarismos

Somando os dois resultado:
9 + 158 = 167 algarismos



4) Calcular o números de algarismos necessários para escrever todos os números naturais  de 20 a 92:

92 - 20 = 72

72+ 1= 73

73 x 2 = 146 algarismos



5) Calcular o números de algarismos necessários para escrever todos os números naturais  de 47 até 249:

99 - 47 = 52 → 52 + 1 = 53

53 x 2 = 106

249 - 100 = 149 → 149 + 1 = 150

150 x 3 = 450 

106 + 450 = 556 algarismos

PROBLEMAS ENVOLVENDO ADIÇÃO E SUBTRAÇÃO

1) Calcule quantos números inteiros e consecutivos existem de 32 a 780, incluídos esses números:

2) Calcule quantos números inteiros e consecutivos existem de 371 a 880, incluídos esses números:

3) Calcule quantos números inteiros e consecutivos existem de 320 a 930, incluídos esses números:

4) Calcule quantos números inteiros e consecutivos existem de 347 a 789, excluídos esses números:

5) Calcule quantos números inteiros e consecutivos existem de 132 a 187, incluindo esses números:


RESPOSTAS:

Observação: Para esse tipo de problema basta subtrair o número maior do menor e ao resultado adicionar uma unidade.

1) Calcule quantos números inteiros e consecutivos existem de 32 a 780, incluídos esses números:

780 - 32 = 748

748 + 1749 números


2) Calcule quantos números inteiros e consecutivos existem de 371 a 880, incluídos esses números:

880 - 371 = 509

509 + 1510 números

3) Calcule quantos números inteiros e consecutivos existem de 320 a 930, incluídos esses números:

930 - 320 = 610

610 + 1= 611 números


4) Calcule quantos números inteiros e consecutivos existem de 347 a 789, excluídos esses números:

Observação: nesses casos subtrair o número maior do menor e do resultado subtrair-se uma unidade.

789 - 347 =  442

442 - 1 = 441 números

5) Calcule quantos números inteiros e consecutivos existem de 132 a 187, incluindo esses números:

187 - 132 =  55

55 - 1 = 54 números