Como a soma interna dos
ângulos de um
triângulo mede
180°. Podemos dividi o polígono formando triângulos, conforme os exemplos abaixo.
Para facilitar a compreensão veja a tabela abaixo.
Nome do polígono
|
Polígono
|
N° de lados
|
N° de triângulos formados
|
Soma dos ângulos internos( Sn)
|
Triângulo
|
|
3
|
(3-2) =1
|
1 .180° = 180°
|
quadrilátero
|
|
4
|
(4-2) =2
|
2 . 180°= 360°
|
Pentágono
|
|
5
|
(5-2) =3
|
3 .180° = 540°
|
Hexágono
|
|
6
|
(6-2) =4
|
4 .180° = 720°
|
Heptágono
|
|
7
|
(7-2) =5
|
5 .180° = 900°
|
* Qual é a soma das medidas dos ângulos internos de um polígono de 13 lados.
Sn= (n - 2) .180°
Sn = (13 - 2) . 180°
Sn = 11 . 180°
S = 1980°
Nenhum comentário:
Postar um comentário